
Embedded Software Architectures
Kizito NKURIKIYEYEZU, Ph.D.



Introduction
This lecture will discuss various architectures for embedded software—the
basic structures that are used to put together an embedded system software.
The best architecture depends on several factors:

Real-time requirements of the application (absolute response time)
Available hardware (speed, features)
Number and complexity of different software features
Number and complexity of different peripherals
Relative priority of features

Thus, each software architecture is tradeoff between complexity and control
over response and priority

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 1 / 20



Choosing the best software architecture
When designing an embedded software, what is the most optimum software
architecture to use for a given system?
The best architecture depends on several factors

Real-time requirements of the application (absolute response time)
Available hardware (speed, features)
Number and complexity of different software features
Number and complexity of different peripherals
Relative priority of features

The decision is based on the tradeoff between complexity and control over
response and priority:

Systems that require little control and poor response can be done with simple
architectures
Rapid response systems will require more complex program design to be
successful.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 2 / 20



Example 1 —Air conditioning
This system can be written with a very simple software architecture.
The response time can be within a number of tens of seconds.
The major function is to monitor the temperature readings and turn on and off
the air conditioner.
A timer may be needed to provide the turn-on and turn-off time.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 3 / 20



Example 2 —Office telephone with Speaker
Consider a digital telephone answering machine with speech compression. It
performs the following operations

Records about 30 minutes of total
voice sampled at 8kHz
The software design for the
answering machine

It must respond rapidly to many
different events.
It has restrictive and various
processing requirements.
It has different deadlines and
different priorities.

This is a more complex architecture

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 4 / 20



Example 2 —Office telephone with Speaker

FIG 1. Simplified class diagram of the office telephone

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 5 / 20



Basic RT software architectures

Round-Robin
Round-Robin with Interrupts
Real-Time Operating System

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 6 / 20



Round Robin



Round Robin

Simplest architecture
No interrupts
Main loop checks each device one at
a time, and service whichever needs
to be serviced.
Service order depends on position in
the loop.
No priorities
No shared data
No latency issues (other than waiting
for other devices to be serviced

FIG 2. Round Robin1

1Bajer, M. (2014). Embedded software development in research environment: A practical guide
for non-experts. Proceedings - 2014 3rd Mediterranean Conference on Embedded Computing,
MECO 2014 - Including ECyPS 2014, (October), 66–71.
https://doi.org/10.1109/meco.2014.6862660

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 7 / 20



Round Robin Architecture
1 void main(void) {
2 while (true) {
3 if (Device_A_needs_service()){
4 //Service device A
5 }
6 if (Device_B_needs_service()){
7 //Service device B
8 }
9 if (Device_C_needs_service()){

10 //Service device C
11 }
12 // Etc...
13 }
14 }

LISTING 1: Round Robin Architecture

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 8 / 20



Round-Robin architecture—Pros and cons
Advantages:

Simple solution, but sufficient for some applications.
Exchanging data between tasks is easy.

Drawbacks:
The worst-case latency of an external request is equal to the execution time of
the entire main loop.

Architecture fails if any one device requires a shorter response time
Most I/O needs fast response time (buttons, serial ports, etc.)

Implementing additional features can adversely affect the correctness of a
system, by increasing latencies beyond acceptable bounds.
Architecture is fragile to added functionality: adding one more device to the
loop may break everything

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 9 / 20



Round-Robin architecture—Pros and cons
Advantages:

Simple solution, but sufficient for some applications.
Exchanging data between tasks is easy.

Drawbacks:
The worst-case latency of an external request is equal to the execution time of
the entire main loop.

Architecture fails if any one device requires a shorter response time
Most I/O needs fast response time (buttons, serial ports, etc.)

Implementing additional features can adversely affect the correctness of a
system, by increasing latencies beyond acceptable bounds.
Architecture is fragile to added functionality: adding one more device to the
loop may break everything

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 9 / 20



Example —A digital multimeter
This uses a round-robin works well for this system because:

only 3 I/O devices
no lengthy processing
no tight response requirements
small delays in switch position changes will go unnoticed

No emergency control
No such requirements
Users are unlikely to notice the few fractions of a second it takes for the
microprocessor to get around the loop

Adequate because it is a SIMPLE system!
Simple devices such as watches, simple microwave ovens, toys, vending
machine etc
Devices where operations are all user initiated and process quickly
Anything where the processor has plenty of time to get around the loop, and the
user won’t notice the delay

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 10 / 20



Example —digital multimeter

FIG 3. Digital multi-meter—It is possible to use
a round-robin architecture because its users
cannot expect faster response than they can
move their hands and the probes

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 11 / 20



Summary —Round robin architecture
This is the simplest architecture devoid of interrupts or shared-data concerns
However several problems arise from its simplicity:

If a device has a response time constraints this architecture has problems (e.g. if
in the example device Z has a deadline of 15 ms and A and B take 10 ms each.)
If any one of the cases at the worst take 5 seconds, the system would have a
max. response time of 5 seconds, which would make it less appealing.
Architecture is not robust. Addition of a single device might cause all deadlines to
be missed.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 12 / 20



Round-robin with interrupts



Round-robin with interrupts

Allows some control of software
execution
Gives more control over priorities.
Based on Round Robin, but
interrupts deal with urgent timing
requirements.
Interrupts a) service hardware and b)
set flags
Main routine checks flags and does
any lower priority follow-up
processing.

FIG 4. Round robin with interrupts

1Bajer, M. (2014). Embedded software development in research environment: A practical guide
for non-experts. Proceedings - 2014 3rd Mediterranean Conference on Embedded Computing,
MECO 2014 - Including ECyPS 2014, (October), 66–71.
https://doi.org/10.1109/meco.2014.6862660

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 13 / 20



Round-robin with interrupts
Principles: Tasks are invoked in round-robin fashion, but interrupt routines take
care of urgent operations

A little bit more control
In this architecture, interrupt service routines (ISR) deal with the very urgent
needs of the hardware and set corresponding flags
Interrupt routines set flags to indicate the interrupt happened
main while loop polls the status of the interrupt flags and does any follow-up
processing required by a set flag.

ISR can get good response
All of the processing that you put into the ISR has a higher priority than the
task code

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 14 / 20



Round-robin with interrupts

FIG 5. Round Robin with Interrupts1

1Automaticaddison, A. (2019, May 6). Round-Robin vs Function-Queue-Scheduling. Automatic
Addison. https://automaticaddison.com/round-robin-vs-function-queue-scheduling-embedded-
software-architecture/#round_robin

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 15 / 20



Round-robin with interrupts

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 16 / 20



Round-robin with interrupts—Pro and cons
Advantages

Still relatively simple
Hardware timing requirements better met

Drawbacks
All task code still executes at same priority
Maximum delay unchanged
Worst case response time = sum all other execution times + execution times of
any other interrupts that occur

Possible improvements
Change order flags are checked (e.g., A,B,A,B,A,D)

Improves response of A
Increases latency of other tasks

Move some task code to interrupt
Decreases response time of lower priority interrupts
May not be able to ensure lower priority interrupt code executes fast enough

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 17 / 20



Round-robin with interrupts—Pro and cons
Advantages

Still relatively simple
Hardware timing requirements better met

Drawbacks
All task code still executes at same priority
Maximum delay unchanged
Worst case response time = sum all other execution times + execution times of
any other interrupts that occur

Possible improvements
Change order flags are checked (e.g., A,B,A,B,A,D)

Improves response of A
Increases latency of other tasks

Move some task code to interrupt
Decreases response time of lower priority interrupts
May not be able to ensure lower priority interrupt code executes fast enough

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 17 / 20



Round-robin with interrupts—Pro and cons
Advantages

Still relatively simple
Hardware timing requirements better met

Drawbacks
All task code still executes at same priority
Maximum delay unchanged
Worst case response time = sum all other execution times + execution times of
any other interrupts that occur

Possible improvements
Change order flags are checked (e.g., A,B,A,B,A,D)

Improves response of A
Increases latency of other tasks

Move some task code to interrupt
Decreases response time of lower priority interrupts
May not be able to ensure lower priority interrupt code executes fast enough

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 17 / 20



Real Time Operating System



Real Time Operating System Architecture
Most complex
Interrupts signal the need for follow-up tasks
Instead of a loop deciding what to do next the RTOS decides.
Interrupts handle urgent operations, then signal that there is more work to do
for task code
One follow-up task can be suspended by the RTOS in favoring of performing a
higher priority task.
Differences with previous architectures

We don’t write signaling flags (RTOS takes care of it)
No loop in our code decides what is executed next (RTOS does this)
RTOS knows relative task priorities and controls what is executed next
RTOS can suspend a task in the middle to execute code of higher priority

With an RTOS it is possible to control task response and interrupt response!

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 18 / 20



RTOS—Pros and cons
Advantages

Task do not disturb others —This is
actually remarkably hard otherwise
Provices a standard way for memory
protection —if a process tries to
access memory that isn’t its own, it
fails. This is probably a fault and it
makes debugging a lot easier.
Built in priority-based scheduling,
abstracting timing information
Maintainability and extensibility,
modular code, easy testing, code
reuse

Disadvantages
An RTOS itself needs some
processing time, throughput is
affected.
An RTOS used lot of system
resources which is not as good
Very few tasks run at the same time
and their concentration is restricted
to few applications to avoid errors
Quality and industrial-level RTOS are
expensive

1See a list of key RTOS at https://www.cs.unc.edu/~anderson/teach/comp790/rtosdb/index.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 19 / 20

https://www.cs.unc.edu/~anderson/teach/comp790/rtosdb/index.html


RTOS—Pros and cons
Advantages

Task do not disturb others —This is
actually remarkably hard otherwise
Provices a standard way for memory
protection —if a process tries to
access memory that isn’t its own, it
fails. This is probably a fault and it
makes debugging a lot easier.
Built in priority-based scheduling,
abstracting timing information
Maintainability and extensibility,
modular code, easy testing, code
reuse

Disadvantages
An RTOS itself needs some
processing time, throughput is
affected.
An RTOS used lot of system
resources which is not as good
Very few tasks run at the same time
and their concentration is restricted
to few applications to avoid errors
Quality and industrial-level RTOS are
expensive

1See a list of key RTOS at https://www.cs.unc.edu/~anderson/teach/comp790/rtosdb/index.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 19 / 20

https://www.cs.unc.edu/~anderson/teach/comp790/rtosdb/index.html


Conclusion—Architecture Selection
Select the simplest architecture that will meet your response requirements.
If your response requirements might necessitate using a real-time operating
system then that should probably be your choice.
Things rarely get smaller/simpler and its a lot easier to start on a more
complicated architecture than to migrate to it later when things grew to hairy
If it makes sense create hybrids

TAB 1. Characteristics of various software architectures

Priorities available Worse response time for task code Code maintainablity Simplicity

Round-robin None Sum of all task code Poor Very simple
Round-robin with interrupts Interrupt routines in priority order,

then all task code at the same time
Total of execution time for all task code
(plus execution time for interrupt rou-
tines)

Good for interrupt rou-
tines. Poor for task
code

Must deal with data shared between
interrup routines and task code

Real-time operating system Interrupt routines in priority order,
then task code in priority order

Zero (plus execution time for interrupt
routines)

Very good Most complex (but the complex is inside
the OS itself and is usually hidden to
the programmers/user)

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 20 / 20



Conclusion—Architecture Selection
Select the simplest architecture that will meet your response requirements.
If your response requirements might necessitate using a real-time operating
system then that should probably be your choice.
Things rarely get smaller/simpler and its a lot easier to start on a more
complicated architecture than to migrate to it later when things grew to hairy
If it makes sense create hybrids

TAB 1. Characteristics of various software architectures

Priorities available Worse response time for task code Code maintainablity Simplicity

Round-robin None Sum of all task code Poor Very simple
Round-robin with interrupts Interrupt routines in priority order,

then all task code at the same time
Total of execution time for all task code
(plus execution time for interrupt rou-
tines)

Good for interrupt rou-
tines. Poor for task
code

Must deal with data shared between
interrup routines and task code

Real-time operating system Interrupt routines in priority order,
then task code in priority order

Zero (plus execution time for interrupt
routines)

Very good Most complex (but the complex is inside
the OS itself and is usually hidden to
the programmers/user)

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Architectures January 29, 2023 20 / 20



The end


	Round Robin
	Round-robin with interrupts
	Real Time Operating System
	The end

